

Using Advanced PV and BoS Modelling and Algorithms to Optimize the Performance of Large Scale Utility Applications

"Typical" questions about PV Monitoring for Utility scale PV Plants

Why is it needed? Who needs it? Who pays for it?

Is it beneficial?

th PVPMMW, Cologne

Gantner Instruments Environmental Solutions

Business Unit for PV Monitoring and Logging Applications

Product and services
reaching from
String current monitoring,
Plant control,
Data collection

4th PVPMMW, Cologne

to O&M optimization and automated Investor feedback.

Solutions on 3 levels

- STRING level
- DATA level
- Portal/SCADA level

Monitoring and Control of Utility Scale Photovoltaic Systems Germany | Austria | China | France | India | Singapore | Sweden | USA ntroduction

- 1 Introduction: Do we need PV Power Plant Monitoring on a MW scale?
- 2 PV Performance understanding
- 3 Data Acquisition & handling
- 4 Data Analysis
- 5 Performance prediction & Optimization

6 **Investment** vs. **Benefit** of Monitoring: Impact on System cost (CAPEX), O&M (OPEX) and LCoE

PV Performance understanding

Gantner Instruments Test Site, AZ/USA

Characterise modules outdoor where possible to develop performance algorithms

Gantner instruments

Gantner Instruments Test Site, AZ/USA

Gantner

Benefits

- Unique PV Module performance track record since 2010
- Baseline for next generation of PV Modeling and prediction of PV Plant performance and monitoring
- Technology benchmark
- · Bankability support for EPCs, Investors, Insurance
- · Key for improved Utility PV Monitoring concepts

USP:

1th PVPMMW, Cologne

High performance data acquisition, 3rd party technology benchmark, advanced characterization and Analysis methods

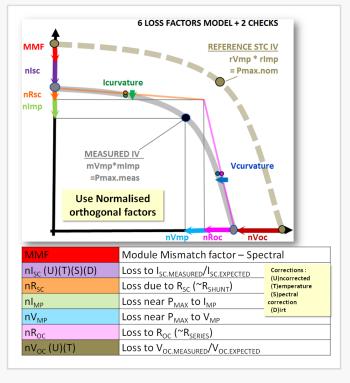
Tested PV Module references :

First Solar, Trina, Yingli, Sunpower, Manz, SolarWorld, Solar Frontier, Kaneka, Hanergy, MiaSole, Q-Cells, Bosch Solar, Panasonic

Cooperations with leading Institutions, experts, EPCs and IPPs.

Name	Description	Units				
G _H	Global Horizontal Irradiance	kW/m²				
D _H	Diffuse Horizontal Irradiance	kW/m²				
B _N	Beam Normal Irradiance	kW/m²				
GI	Global Inclined Irradiance (Pyranometers and c-Si ref cells)	kW/m²				
T _{AMB}	T _{AMB} Ambient Temperature					
T _{MOD}	Back of Module Temperatures	С				
WS	Wind Speed	ms ⁻¹				
WD	Wind Direction	0				
RH	Relative Humidity	%				
G(λ)	Spectral Irradiance G(350–1050nm)	W/m²/nm				

IV curves and weather data are measured every minute for 24 fixed modules and 6 on a 2D tracker Running since July 2010 with a 98.9.% uptime.


Loss Factor Model (LFM) – SRCL / Gantner Instr. Gantner

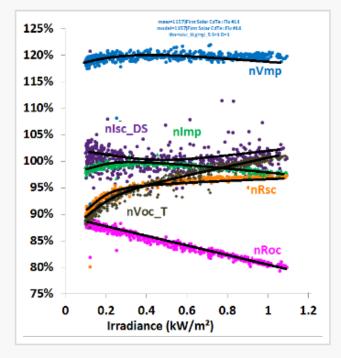
Use to characterise PV Modules based on IV measurements

LFM

- 6 normalised orthogonal parameters associated with
 I_{SC}, R_{SC}, I_{MP}, V_{MP}, R_{OC} and V_{OC}
- Multiply all 6 together to give the PR_{DC} or MPR
- Easy sanity check for bad data if not ~1
- Easy to see good from bad values e.g. 98% or 90%
- Differentiates PV technologies –
 e.g. Thin Film usually has a higher loss due to R_{OC} (from TCO resistivity)

Plot LFM values vs	To show				
Time	Degradation or annealing				
Irradiance	Low light performance				
Module Temperature	Thermal coefficients				

LFM measurements I


Curve fit vs. Irradiance

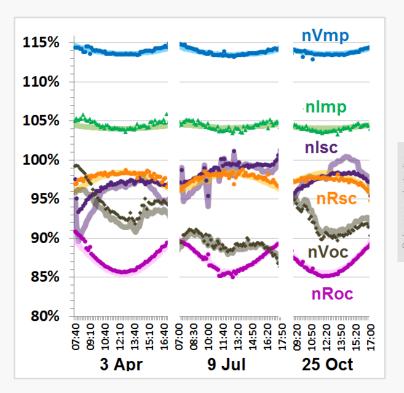
- Easy to do sanity check (raw data shown)
- Typical pattern per technology
- Shows low light and I².Rs loss
- nVoc_T: temp corrected for clarity
- nlsc_DS diffuse, spectral corrected for clarity

- nVmp
 - nRoc

nlmp

- nRsc
- nVoc
- nlsc

D=Diffues, S=Spectrum


LFM measurements II

Compare Measured vs. Predicted

- · Prediction over time
- Data every quarter to show degradation or seasonal
- · Residual analysis

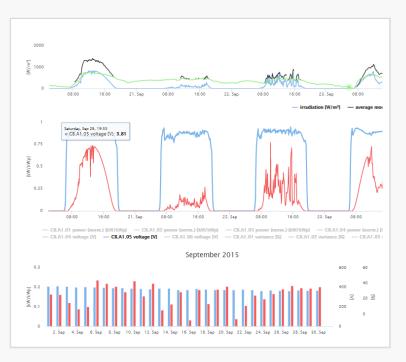
• nlmp

- nVmp
 - nRoc
 - nRsc
 - nVoc
 - nlsc

Gantner

instruments

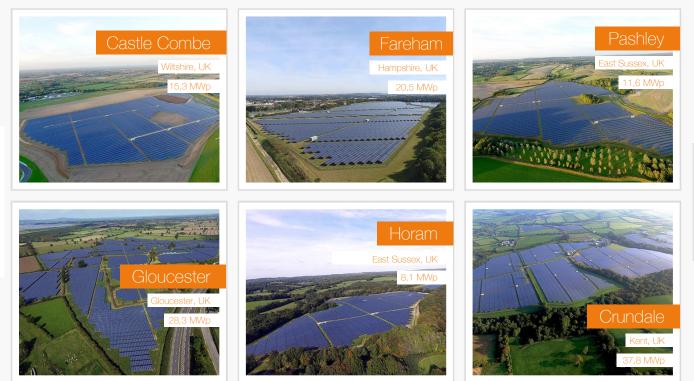
Data Acquisition & handling

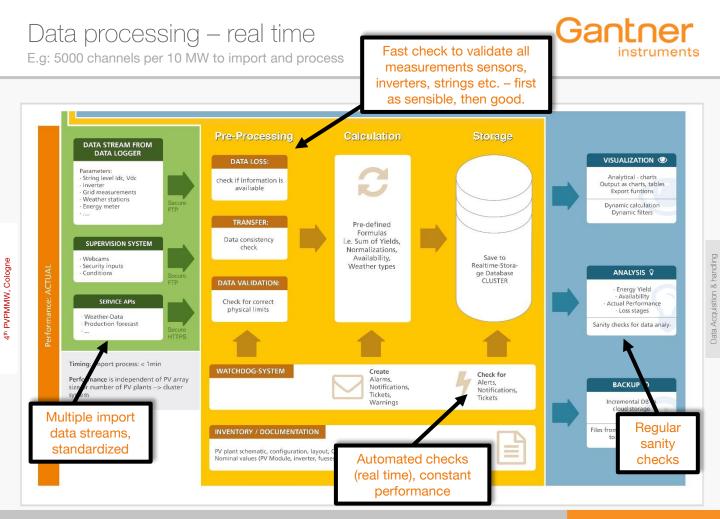


_

Gantner

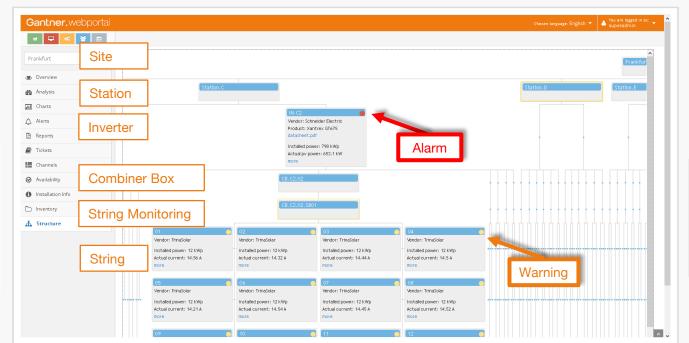
Market expectations: Monitoring and control concept for cost effective PV Energy generation and risk reduction


- Transparency of PV Plant production (fast & reliable)
- Vendor-independent PV Plant monitoring
- Unified platform for all PV assets (information, data)
- Combines all available information (Inverter, DC & AC side, grid, DSO)
- Effective and automated PV plant management, Inventory information
- Reporting, Alarms
- O&M logging
- Access form anywhere (HTML5, W3C)
- Provide baseline for O&M activities, Performance Guarantees, energy prediction (day ahead), energy trading, etc.



Data Acquisition & handling

Samples pictures from latest UK installations; out of >2.8GW installed

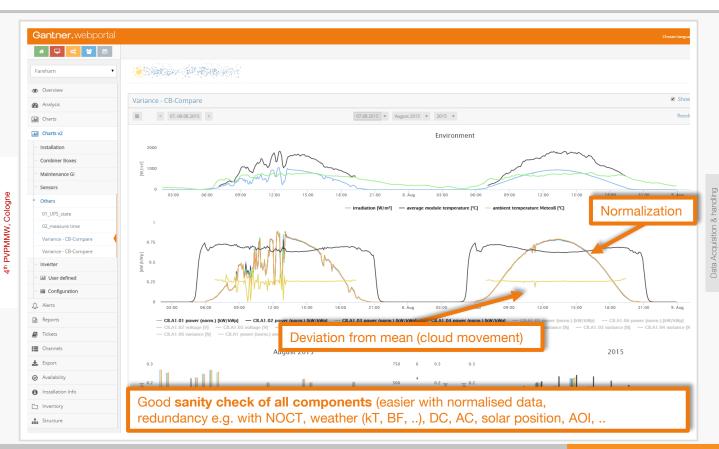


PV Plant Structure

PV Plant structure incl. warnings and linked information

- Plant structure (generated during data import) allows design & sanity checks
- Fast validation check of all measurements (sensors, inverters, strings)
- Compare performance of peers , localize issues.

Normalization / Deviation of Strings, SCB, Inv. Gantner


Absolute Values: I MEASURED differs for larger and smaller arrays

Normalization / Deviation of Strings, SCB, Inv.

Normalized values: I_{MEASURED}/P_{NOMINAL} show similar values

Availability calculation for PPA / IPP contracts

Availability

Layout per 12 month, custom start date

Site	Period	H_PER [h]	SYS_AIV [%]	IN count	AMA [h/IN]	SYS_AIV_AMA [%]	
Oxford	2013/01-2013/12	2932	98.91	7	10	99.25	
Oxford	2014/01-2014/12	2987	99.47	7	10	99.8	
Oxford	2015/01-2015/12	817	100	7	10	100	

• Resolution: h, day, month, year, 12month floating

• For each component (Inverter, System, Sub-System, Production batch, ..)

→ Supports preventive maintenance strategies

s	ite	Period	H_PER [h]	WR.1_AIV [%]	WR.2_AIV [%]	WR.3_AIV [%]	WR.4_AIV [%]	WR.5_AIV [%]	WR.6_AIV [%]	WR.7_AIV [%]	SYS_AIV [%]	IN count	AMA [h/IN]	SYS_AIV_AMA [%]
C	xford	2013/01-2013/12	2932	99.86	96.73	99.73	96.73	99.86	99.66	99.8	98.91	7	10	99.25
C	xford	2014/01-2014/12	2987	99.13	99.2	99.67	99.1	100	100	99.2	99.47	7	10	99.8
C	xford	2015/01-2015/12	817	100	100	100	100	100	100	100	100	7	10	100

Layout per 12 month, custom start date detailed

Layout per Year

Gantner

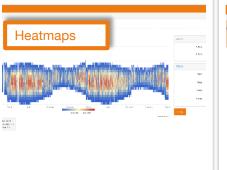
instruments

Data Analysis

Data Analysis

4th PVPMMW, Cologne

Data Analysis for Utility Scale Projects

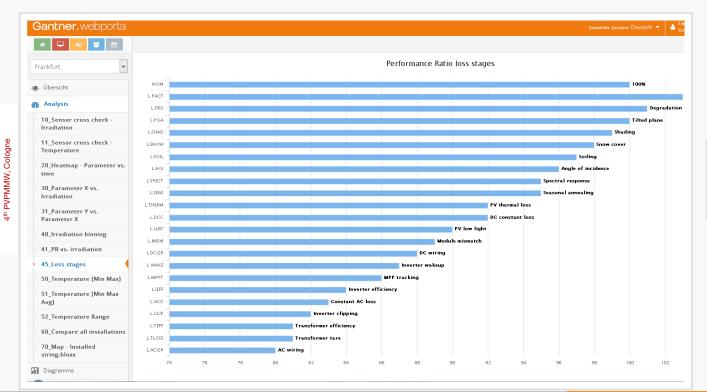

Gantner

Features (selected):

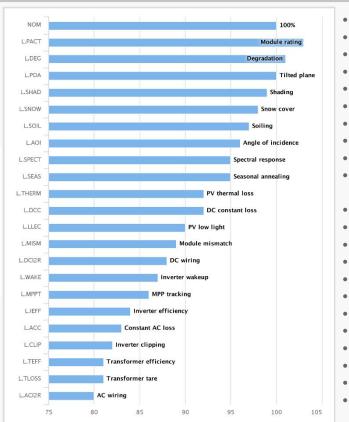
- Heat maps for quick detection of outages or drifts: should be smooth, sinusoidal, repeatable yearly, ..
- Irradiation binning
- Temperature trends (min, max, avg.)
- Asset performance: Comparison of different installations, normalized
- Temperature behavior
- · Low- & Mid-light behavior
- Maps

1th PVPMMW, Cologne

- Sensor-cross-checks
- Availability analysis for IPP contracts



Loss Stages - Identify the losses real time



Can check losses at each measurement to show if anything is too large like shading or thermal

Actual Performance II - Zoom

Loss Stages - Identify the losses real time

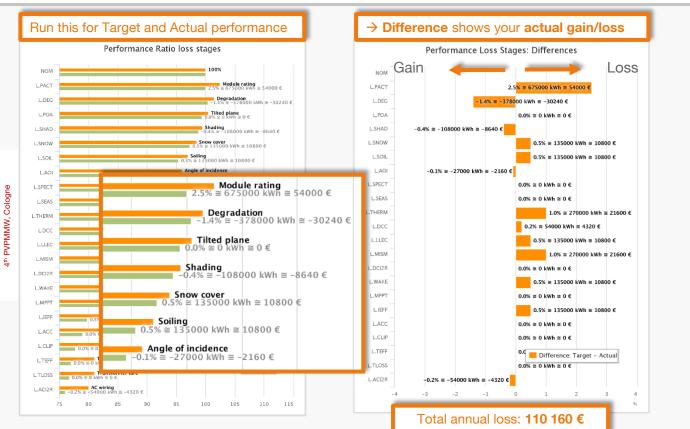
- Start at Nominal $P_{MAX} = 100\%$
- Module Tolerance P_{ACTUAL}/P_{NOMINAL}
- Degradation vs. time
- Plane Of Array Insolation
- Shadow (vs. solar position)
- Soiling vs. time and precipitation
- Angle of incidence includes reflectivity
- If possible Spectrum from EQE, multi junction
- Seasonal, anneal for some TF
- Thermal loss T_{MOD} from T_{AMB}, NOCT/NMOT, gamma, wind speed
- DC constant loss if needed
- Low Light efficiency change @ ~0.2 suns
- Mismatch from series strings
- DC I².Rs wiring loss
- Inverter wakeup
- MPPT
- Inverter efficiency
- AC constant
- Clipping
- Transformer efficiency
- Transformer loss
- AC wiring

Gantner

instruments

PVPMMW, Cologne

ŧ

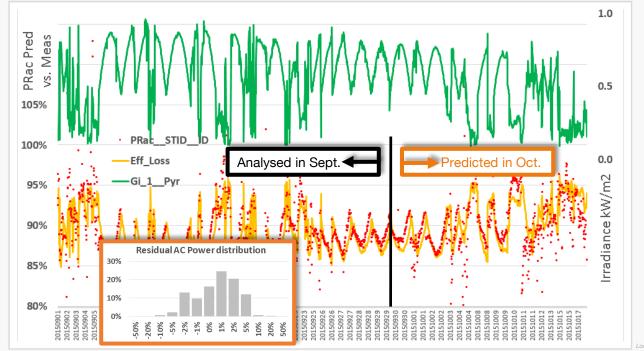


.. by using hourly simulation programs

Loss Stages: Actual vs. Target performance

Compare w/ assumptions, use actual weather data and simulations, real time

Assumptions: YF (per year) 1350 kWh/kWp; Pnom_site 20 MWp; Energy value 0.08€/kWh (assumed); LCoE background model possible.


Prediction & Optimization

Gantner

instruments

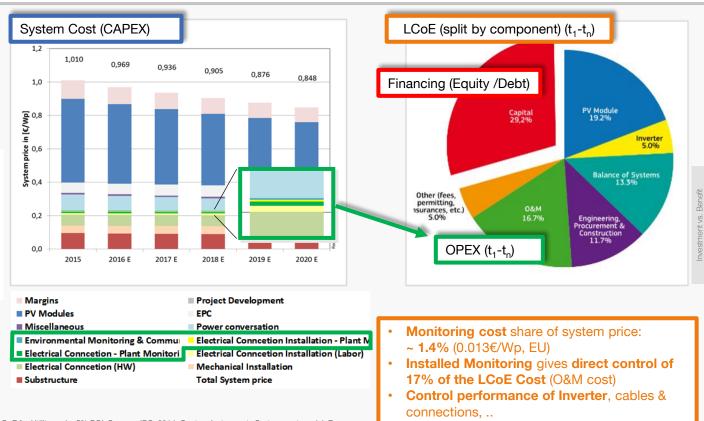
Performance Prediction

- Setup algorithms to predict instantaneous PV and BoS performance for measurement validity and energy yield predictions
- Basic version (shown) gives already very useful results for system cross-check and trend detection (soiling alerts, shading, ..)

Gantner

instruments

4th PVPMMW, Cologne


Investment vs. Benefit of Monitoring: Impact on System cost (CAPEX), O&M (OPEX) and LCoE

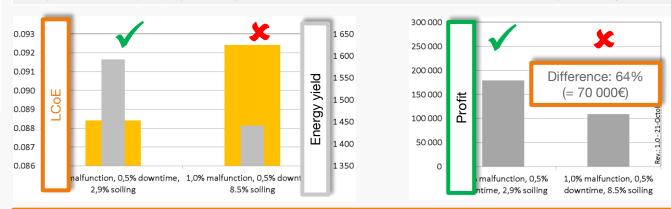
CAPEX (t ₀)
OPEX (t ₁ -t _n)
Energy Production (t_1-t_n)
Financing (Equity / Debt)

Monitoring Investment & Benefit

Impact of Monitoring on System cost (CAPEX), O&M (OPEX) and LCoE

Gantner

LCoE for Utility scale, 5% ROI; Source: JRC, 2014; Gantner Instruments System cost model, Europe


Monitoring Investment & Benefit II

Impact of O&M strategy on Yield, LCoE and Profits, 10MWac

Losses (O&M relat'd)	Example	Monitoring 🗸	No Monitoring 🗶
Downtime	Maintenance	0.5 %	0.5 %
Malfunction	Modules, combiner boxes, fuses	0.5 %	1 %
Soiling losses	Cleaning events	2.9% (4 x)	8.5% (2 x)
O&M cost (€, per yr)		166 577	154 577
Energy yield (kWh/kWp)		1546	1442

PV power plant area: 138 219m²; GCR: 0.5; 77 Combiner boxes (CB); 24 Strings per CB; Annual numbers: YF=1608 kWh/kWp; Yearly operation costs w/ labor € 45 950; Power plant care cost € 26 790 (18 469); Project lifetime 25 yr; Labor cost 25€/h; Inflation rate 2.5%; Water 0.0025 €/h; Fuel cost: 1.5 €/h; Cost for components exchange and stock

PV power plants with monitoring can deliver 7.3% better Energy yield, results in 4.5% better LCoE

1th PVPMMW, Cologne

Summary

Cost effective Monitoring Solutions can :

- Reflect Financial KPIs (Performance guarantees, allowed maintenance, integrate simulations)
- Allow "real time" data processing for availability, alarms, warnings
- Automated Performance Analysis and characterization in terms of kWh and \$ (loss separation, sensitivity to irradiation, weather, cleaning, ..)
- Implement preventive maintenance strategies

Advanced Monitoring Algorithms leads to:

- Providing Investors with reliable information about O&M, track record & plant performance, control
- Separating and identifying losses where "actual vs. target" differs
- Optimizing Plant Performance during lifetime
- Reducing LCoE based on advanced Monitoring design (characteristic trends, Loss Factor Model)
- Reducing risk for Investors & Independent Power Producers (IPPs)

Gantner

instruments